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Abstract
Quantum systems often contain negative energy densities. In general relativity,
negative energies lead to time advancement, rather than the usual time delay.
As a result, some Casimir systems appear to violate energy conditions that
would protect against exotic phenomena such as closed timelike curves and
superluminal travel. However, when one examines a variety of Casimir systems
using self-consistent approximations in quantum field theory, one finds that a
particular energy condition is still obeyed, which rules out exotic phenomena. I
will discuss the methods and results of these calculations in detail and speculate
on their potential implications in general relativity.

PACS numbers: 03.65.Nk, 04.20.Gz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

General relativity allows spacetimes of any geometry. Given any gµν , we can compute Rµν

and R, and then set up a matter configuration whose stress–energy tensor is

Tµν = 1

8πG

(
Rµν − 1

2
gµνR

)
(1)

to obtain a solution to Einstein’s equations with the desired geometry. As a result, nothing
seems to prohibit the existence of exotic phenomena such as closed timelike curves [1],
traversable wormholes [2] or superluminal travel [3]. Therefore, we expect there to exist
some restrictions on the possible tensors Tµν , usually called energy conditions, which would
lead to restrictions on the possible spacetime geometries. While it is straightforward to show
that classical field theories obey energy conditions that are strong enough to forbid exotic
phenomena, quantum field theories appear to violate these conditions.
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Figure 1. Classical energy density due to the wall (dotted), the quantum correction (dashed) and
the total (solid) for typical values of the coupling constants.

We will focus on the following energy conditions.

• The weak energy condition (WEC) requires that for all timelike vectors V µ,

TµνV
µV ν � 0. (2)

That is, all observers see positive energy density.
• The null energy condition (NEC) is weaker than the WEC, and requires that equation (2)

hold only for null vectors V µ.
• The averaged null energy condition (ANEC) is weaker than the NEC, and only requires

that the NEC hold when integrated over a complete null geodesic.

In a classical background, all of these conditions can be imposed consistently, and any
one of them would be sufficient to rule out exotic phenomena [1]. On the other hand, the
standard Casimir system of parallel conducting plates has a static negative energy between
the plates, and thus it appears to violate all of these conditions. However, there are some
obvious caveats to this result. An external agent has to hold the plates apart, and impose
the boundary condition. Furthermore, in the case of ANEC, the geodesic has to go through
the boundary, where we are ignoring the effects of the material. Since gravity couples to all
sources of stress–energy, we cannot consider the contribution of the Casimir energy without
also including the contributions due to the materials and their internal interactions.

Previous work [4, 5] avoided these problems by considering a domain wall background
that is renormalized with standard counterterms. In this way, all the contributions to the stress–
energy tensor can be included. The result, shown in figure 1, is that for any coupling, there
is always a small region at large enough x, where the energy density is negative. So we can
always choose the coupling small enough that our semiclassical approximation is reliable and
still find negative energies. This situation also violates quantum inequalities [6–8]. Although
this system violates WEC, since we have a region of negative energy density, and NEC, if we
take a null vector in the region of negative energy pointing perpendicular to the wall, ANEC
is still obeyed, since the contribution from the complete geodesic perpendicular to the wall is
only negative if the total energy of the domain wall is negative (indicating an unstable vacuum
and a breakdown of our approximation).

In a number of other examples, explicit calculation shows that ANEC is obeyed. These
include a geodesic outside a spherically symmetric background potential [9] or a dielectric
sphere [10]. Other calculations also show that energy condition violation is more difficult to
achieve in realistic situations than idealized models would suggest [11, 12]. ANEC is also
known to be obeyed by free scalar [13] and electromagnetic [14] fields in flat spacetime. Other
works have found restrictions on energy condition violation in flat space [6, 15, 16].
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Figure 2. In free space (left) we have even and odd normal mode wavefunctions. In the presence
of a Dirichlet plate (right), the even functions are replaced by the odd functions with a change of
sign crossing the plate.

2. Plate with a hole calculation

To further investigate ANEC, work done in collaboration with Olum [17] considers another
alternative. We avoid the plate by drilling a hole in it for the geodesic to travel through.
Then we might expect that the region around the hole would provide only a small correction
to the negative contribution from the rest of the geodesic, yielding a violation of ANEC.
Since the geodesic never encounters the material, the result will be finite with no contributions
from the counterterms (which have support only where there is a potential). Our approach will
be to use a Babinet’s principle argument to show that the Casimir energy of a Dirichlet plate
with a hole is the sum of the Casimir energy of a full Dirichlet plate and the Casimir energy
of a Neumann disc. Then we will use scattering theory in ellipsoidal coordinates to solve the
disc problem, and add in the standard result for the full plate.

In free space, we can decompose the spectrum into modes that are odd or even under
reflection of the z-axis. Imposing a Dirichlet boundary condition at z = 0 has no effect on
the odd modes, since they already obey the boundary condition. However, the even modes are
modified; they turn into the odd modes multiplied by the sign of z, with a cusp at z = 0, as
shown in figure 2.

If there is a hole in the plate, we find even functions that obey Neumann conditions in
the hole (since they are even) and Dirichlet conditions elsewhere. Up to a similar sign flip
between positive and negative z, these are the same functions as one obtains for the odd modes
of a Neumann patch with the same shape as the hole, as shown in figure 3.

Let E be the contribution to the Casimir energy from the free even modes, O be the
contribution to the Casimir energy from the free odd modes and A be the contribution to the
Casimir energy from the modes for the plate with the hole. Then we have the following total
contributions to the energy, where we have taken the difference with the free space result:

free space: E + O
subtract free space

�⇒ zero

Dirichlet plate: O + O
subtract free space

�⇒ O − E

Dirichlet plate with hole: A + O
subtract free space

�⇒ A − E

Neumann disc: E + A
subtract free space

�⇒ A − O.

Thus we have found

[Dirichlet plate with a hole] = [Neumann disc] + [Dirichlet plate]. (3)

Next, we set up the disc problem. We will begin in two space dimensions and find
the Casimir energy of a Neumann line segment. For notational consistency with the
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Figure 3. If there is a hole in the Dirichlet plate (left), the new even functions satisfy Neumann
conditions in the hole and Dirichlet conditions elsewhere. The odd functions for a Neumann patch
with the same shape as the hole (right) are the same except for a change of sign between sides.

three-dimensional case, we consider the x–z plane with the geodesic running along the
z-axis and the segment running along the x-axis from x = −d to x = d. We define elliptical
coordinates µ and θ by

x = d cosh µ cos θ z = d sinh µ sin θ (4)

and then the boundary condition is applied at the points where the radial coordinate µ is zero.
In elliptical coordinates, the problem is still separable, but there is no analogue of angular
momentum conservation. We still have separate angular and radial functions, but we now
have the additional dimensionful parameter d. Thus the angular functions are now not simply
functions of θ ; they can now depend also on kd, where k is the wave number. Similarly the
radial functions can depend on kd and r/d separately, rather than depending simply on the
product kr .

As described above, we have normal mode solutions that are even and odd under reflection
of the z-axis. Since the line segment has Neumann boundary conditions, only the odd modes
need to be modified from the free case. These become

ψom(µ, q) = 1
2

[
e2iδHo(1)

m (µ, q) + Ho(2)
m (µ, q)

]
sem(θ, q) (5)

where q = (dk/2)2. Here sem(θ, q) is the odd angular Mathieu function and Ho(1)
m

and Ho(2)
m are the corresponding odd radial functions of the third and fourth kinds, with

Ho(1)
m = Jom + iYom and Ho(2)

m = Jom − iYom, where Jom and Yom are the radial functions
of the first and second kind respectively. The phase shift δ(q) is defined by imposing the
boundary condition, which yields

e2iδ = −Ho(2)
m

′(0, q)

Ho
(1)
m

′(0, q)
(6)

where the derivative is with respect to µ.
We have adopted the normalization conventions of [18], but have modified their notation

to make the analogy to the circular case clearer. In these conventions, the even and odd angular
functions cem(θ, q) and sem(θ, q) are normalized just like the cos mθ and sin mθ solutions in
the circular case, so that∫ 2π

0
dθ cem(θ, q)2 =

∫ 2π

0
dθ sem(θ, q)2 = π. (7)
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As in the circular case, m = 0, 1, 2, 3 . . . for the even functions1 and m = 1, 2, 3 . . . for the odd
functions. The radial functions are then normalized so that they approach the corresponding
Bessel functions at large radius2. Instead of singularities at zero radius as in the circular
case, the radial functions of the second kind have jump discontinuities—the singularity is now
‘spread’ over the interfocal separation.

From these wavefunctions, we form the normalized quantum field φ:

φ(µ, θ) =
∞∑

m=0

∫ ∞

0
dk

√
k

2πω

(
Jem(µ, q)cem(θ, q)b̂m

k
† + Jom(µ, q)sem(θ, q)ĉm

k
†) eiωt

+ complex conjugate, (8)

where the odd term vanishes for m = 0. The stress–energy tensor for a minimally-coupled
scalar field is

Tλν = ∂λφ∂νφ − 1
2ηλν[∂λφ∂λφ]. (9)

For a null vector, ηλνV
λV ν = 0, so we have

TλνV
λV ν = (V α∂αφ)

2
. (10)

Taking our geodesic along the z-axis, V = (1, ẑ), we have

TλνV
λV ν = φ̇2 + (∂zφ)2 . (11)

We then substitute the result for the quantum field into this expression, subtract the free space
result and take the vacuum expectation value [9, 20–22]. For computational efficiency, we
extend the k integration to the whole real axis and use contour integration to obtain an integral
over the imaginary k-axis, using k = iκ . We obtain [17]

〈φ̇2〉 = 1

π2

∞∑
m=1

∫ ∞

0
dκ

Io′
m(0, ϕ)

Ko′
m(0, ϕ)

κ2Kom(µ, ϕ)2sem(θ,−ϕ)2. (12)

On the z-axis, terms with m even vanish, so we have

〈φ̇2〉 = 1

π2

∞∑
m=1

′ ∫ ∞

0
dκ

Io′
m(0, ϕ)

Ko′
m(0, ϕ)

κ2Kom(µ, ϕ)2sem(π/2,−ϕ)2, (13)

where the prime on the summation sign indicates that we sum over odd values of m. The
sum over channels and integral over k are absolutely convergent, since we have subtracted the
contribution of the free theory and we are away from the interactions, where all the remaining
counterterms vanish. Similarly, on the z-axis we have

〈(∂zφ)2〉 = − 1

π2d2 cosh2 µ

∞∑
m=1

′ ∫ ∞

0
dκ

Io′
m(0, ϕ)

Ko′
m(0, ϕ)

Ko′
m(µ, ϕ)2sem(π/2,−ϕ)2. (14)

In three dimensions, we employ oblate ellipsoidal coordinates,

x = d
√

(ξ 2 + 1)(1 − η2) cos φ y = d
√

(ξ 2 + 1)(1 − η2) sin φ z = dηξ, (15)

using the conventions of [23]. As in spherical coordinates, the solutions are indexed by
n = 0, 1, 2, 3 . . . and m = −n, . . . , n. The angular solutions are spheroidal harmonics
Ym

n (ic; η, φ), where c = kd, cos−1 η is the polar angle and φ is the azimuthal angle.
These are normalized analogously to ordinary spherical harmonics. The radial functions

1 In the circular case, for m = 0 the even solution is a constant, which is normalized to be 1√
2

rather than cos 0 = 1,

so that its normalization is consistent with the other modes.
2 Note that the functions Jem and Jom defined in [19] have an additional factor of

√
π/2.
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are Rm(1)
n (ic;−iξ) and Rm(2)

n (ic;−iξ), where ξ is the radial coordinate. These are normalized
so that they approach the usual spherical Bessel functions at large radius. The factors of ±i
convert from prolate to oblate coordinates.

Now we consider Neumann boundary conditions on the disc ξ = 0. If m + n is even, the
functions obey the boundary conditions already. Otherwise we need to take a combination of
Rm(1)

n and Rm(2)
n . With Rm(3)

n = Rm(1)
n + iRm(2)

n and Rm(4)
n = Rm(1)

n − iRm(4)
n we can write the

desired radial function

ψm
n (ic;−iξ) = 1

2

[
e2iδ(ic)Rm(3)

n (ic;−iξ) + Rm(4)
n (i;−iξ)

]
(16)

with the condition

e2iδ(i) = −Rm(4)
n

′(ic; 0)

R
m(3)
n

′(ic; 0)
(17)

where the derivative is with respect to the second argument.
Passing to the imaginary k-axis in the same way as in the two-dimensional case, we

obtain [17]

〈φ̇2〉 = − 1

π

∞∑
n=0

n∑
m=−n

′ ∫ ∞

0
dκ κ3 Rm(1)

n
′(γ ; 0)

R
m(3)
n

′(γ ; 0)

∣∣Ym
n (γ ; η, φ)

∣∣2
Rm(3)

n (γ ;−iξ)2, (18)

where γ = ic = ikd = −κd and the prime on the summation sign means that only odd values
of m + n are included. On the axis, we have

〈φ̇2〉 = − 1

π

∞∑
n=1

′ ∫ ∞

0
dκ κ3 R0(1)

n
′(γ ; 0)

R
0(3)
n

′(γ ; 0)

∣∣Y0
n(γ ; 1, φ)

∣∣2
R0(3)

n (γ ;−iξ)2, (19)

where we have specialized to m = 0 because the contributions from nonzero m vanish on the
axis, leaving only a sum over odd values of n. Similarly, on the axis we have

〈(∂zφ)2〉 = − 1

πd2

∞∑
n=1

′ ∫ ∞

0
dκ κ

R0(1)
n

′(γ ; 0)

R
0(3)
n

′(γ ; 0)

∣∣Y0
n(γ ; 1, φ)

∣∣2
R0(3)

n
′(γ ;−iξ)2 (20)

where the primes on the radial functions indicate derivatives with respect to the second
argument.

Once we have computed the result for a Neumann segment and disc, we must simply
combine with the Dirichlet mirror result (see for example [24]),

〈φ̇2〉 + 〈(∂zφ)2〉 =




− 1

32πz3
in two dimensions, and

− 1

16π2z4
in three dimensions.

(21)

3. Results

We carried out the two-dimensional calculations using the C++ Mathieu function package of
Alhargan [25, 26], with minor enhancements to accommodate the extreme range of Mathieu
functions needed to accurately compute this sum. We have also adapted the code to use our
normalization conventions instead of those of [19]. The sums and integrals are then done
by calling the C++ code from Mathematica routines3. In three dimensions, we used the
Mathematica spheroidal packages of Falloon [27], with minor enhancements to avoid memory

3 Mathematica does provide built-in support for both radial and angular Mathieu functions, but only for functions of
the first kind (as of version 5.2).
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Figure 4. Contributions to NEC in two dimensions (left) and three dimensions (right) for a
Dirichlet plate with a hole of unit radius, as functions of distance along the axis passing through
the centre of the hole. Extrapolation is used for points at a distance less than 0.15 in the left panel
and 0.25 in the right panel. The dotted lines show the perfect mirror result.
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Figure 5. Contributions to NEC in two dimensions (left) and three dimensions (right) for a
Neumann plate with a hole of unit radius, as functions of distance along the axis passing through
the centre of the hole. Extrapolation is used for points at a distance less than 0.11 in the left panel
and 0.25 in the right panel. The dotted lines show the perfect mirror result.

leaks, allow compatibility with current versions of Mathematica and improve efficiency for
our application. Results in two and three dimensions are shown in figure 4. We see that in both
cases the hole has a dramatic effect, overwhelming the NEC-violating behaviour away from
the plate so that ANEC is obeyed. Although all field theory divergences are well under control,
this calculation is still highly nontrivial for points near the hole, because both the perfect mirror
and the disc have energies that diverge like 1/zn+1 where n is the space dimension and z is the
distance to the hole. The final result, however, is perfectly finite—the origin is just a point
in empty space. As a result, we have to stop our calculation a fixed distance away from the
origin, depending on our numerical precision (and patience). We then extrapolate the result to
zero, and verify that it goes to a finite result with zero slope (without building this requirement
into the extrapolation). Far away, the calculation approaches the perfect mirror result, which
is also shown in figure 4.

Since the Dirichlet plate with a hole obeys ANEC, and the Neumann and Dirichlet cases
typically contribute with opposite signs, we might then expect a Neumann plate to violate
ANEC, with a negative contribution from the hole overwhelming the positive contribution
from far away. It is straightforward to repeat this analysis for that case [17]. However,
as shown in figure 5, we see that ANEC is also obeyed for a Neumann plate with a hole.
Furthermore, both the Dirichlet and Neumann results extend to the case of two plates in the
limit of both large and small holes [17].
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4. Conclusions

Energy condition violation by Casimir systems initially looks dramatic, but in consistent field
theory models it is modest or nonexistent. We do not have an example of ANEC violation
in flat space—that is, due to quantum effects in a background of non-gravitational quantum
fields. Violations are known to exist [28–31] in curved space, when one considers the quantum
effects of curvature caused by distant masses. But the magnitude of this violation is typically
much smaller than competing effects associated with the source of the curvature itself (unless
we consider Planck-scale objects, where classical general relativity is unreliable), so it is not
clear that this violation will persist in the full theory. If ANEC (possibly with appropriate
modifications in curved space) is always obeyed by realistic quantum field theories with no
uncontrolled external agents, it would prevent the appearance of exotic phenomena. Work is
underway to investigate the possibility of finding analytic arguments to ensure that ANEC is
always obeyed in flat space.
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